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Abstract

A synthesis of the title compound, operable on kilogram scale, employs reductive acetylation of an N-acylindazole to give a hemi-
aminal acetate followed by deacetoxylation to the corresponding N-alkylindazole.

© 2008 Elsevier Ltd. All rights reserved.

Recent publications have described the synthesis, medi-
cinal chemistry, and pharmacology of 1-(S)-(2-aminopropyl)-
1H-indazol-6-ol (1, AL-34662), an experimental 5-HT,
serotonergic receptor agonist under investigation by
Alcon for the treatment of elevated intraocular pressure
associated with glaucoma.! The discovery synthesis of 1
is summarized in Scheme 1.'?

To redress issues of regioselectivity encountered in the
alkylations leading from indazol-6-ol (2) to intermediate
4, a second-generation synthesis was developed as outlined
in Scheme 2.%* Heating fluoro nitrile 6 with (R)-1-amino-2-
propanol afforded anilino nitrile 7, which was reduced” to
aldehyde 8. Nitrosation of 8 and reduction in situ led to
4. A variant sequence proceeded via amino indazole 9.
These routes proved useful for preparing 1 in multihundred
gram lots.

In this Letter, we disclose key results of further synthetic
studies on 1, highlighted by the reduction of an N-acyl-
indazole to the corresponding N-alkylindazole via a hemi-
aminal acetate (Scheme 3, 11-12—13). This reduction
sequence enabled upstream utilization of an r-alanine-
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Scheme 1. Discovery synthesis of 1. Reagents and conditions: (a) BnBr,
K,COs;, EtOH, 35%; (b) (R)-propylene oxide, NaOEt, EtOH, 47%, plus
38% of the N2-alkyl isomer; (¢) MsCl, Et;N, CH,Cl,; (d) NaN3;, DMF,
70 °C; (e) NH4OCHO, Pd(C), EtOH, 53% from 4.

derived sidechain component, thereby avoiding further
scaleup of azide chemistry (i.e., 4—5).°

As in the case of 3—4, reaction of 3 with the tosylate of
Cbz-L-alaninol® or the related bromide followed the usual
course of indazole alkylation to give mixtures of the N1-
alkyl product 13 and its N2-alkyl regioisomer. The cyclic
sulfamate of Boc-L-alaninol” gave comparable results.
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Scheme 2. Second-generation synthesis of 1. Reagents and conditions: (a)
(R)-1-amino-2-propanol, Al,03;, DMSO, 125°C, 81%; (b) NaH,PO,,
Ni(Ra), Py-HOAc-H,O, 45 °C, 90%; (c) NaNO,, HOAc-H,O; Zn, 78%;
(d) to give 5: MsCl, Et;N, CH,Cl,; NaN;, DMF, 70°C, 84%; (e)
NH,OCHO, Pd(C), EtOH, 77%; (f) +~-BuONO, THF; Zn, MeOH, aq
NH4O0Ac, 78%; (g) i-BuONO, MeOH, aq H;PO,, 67%.
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Scheme 3. Third-generation synthesis of 1. Cbz = CO,Bn. Reagents and
conditions: (a) Cbz-L-Ala-OSu, K,CO;, MeCN; (b) BnBr, K,CO3;, MeCN,
35°C, 76% from 2; (c) Red-Al, toluene, —25 °C; Ac,0O; DMAP, — 23 °C;
(d) Et3SiH, BFj; etherate, CH,Cl,, 60% from 11; () NH,OCHO, Pd(C),
EtOH, THF, 90%; (f) BCl3, CH,Cl,, —45 °C, 79%.

Preparative separation or recycling of the N2-alkyl isomer
appeared unpromising: N2— N1 alkyl migration in inda-
zoles has been deployed synthetically, but the scope is lim-
ited to cases in which alkylation is readily reversible.®

In comparison, N2— N1 acyl migration is general and
facile.® Accordingly, we found that reaction of 2 with the

succinimidyl ester of Cbz-L-alanine in acetonitrile in the
presence of 2 equiv of K,CO; afforded 1-acylindazole 10
to the practical exclusion of the transient 2-acyl isomer.
Compound 10 was converted to the benzyl ether 11, mp
149-151 °C.

With this solution to the regiochemical problem in hand,
we turned to the conversion of acylindazole 11 to alkyl-
indazole 13. It was expected that, due to the low basicity
of the indazole anion,'* this system would be predisposed
to undesired C-N bond cleavage upon metal hydride
reduction. Borane-THF has proven effective in overcoming
this tendency, of either steric or electronic origin, in amides
such as azetidin-2-ones'' and N-acylindoles.'®®!? Alane
has been deployed likewise,!' with attendant experimental
complexities.'®> However, our numerous attempts to reduce
11 to 13 in a one-flask operation using these or other
hydrides of B or Al resulted instead in preponderant
C-N cleavage to give 3.

Mindful of Rychnovsky’s reductive acetylation—deacet-
oxylation sequence for converting esters to ethers,'* we
then succeeded at converting 11 to 13 in two steps. Addi-
tion of NaAIH,(OCH,CH,OCH3), (Red-Al®) to a toluene
solution of 11 at —25 + 5 °C deprotonated and thus pro-
tected the NHCbz group. Reduction of the carbonyl group
of interest followed. By TLC, the resulting hemiaminal alu-
minate appeared as its hydrolytic breakdown product 3.

The cold reaction mixture was quenched with acetic
anhydride, DMAP, and pyridine, then warmed to 23 °C
to yield hemiaminal acetate 12. For reactions on <10 mmol
scale, a premixed acetylating solution worked well, but on
scaleup increasing amounts of 3 appeared at the expense of
12. A parallel scale effect in an ester reduction was attrib-
uted to difficulties with temperature control.'*® On the sur-
mise that DMAP-pyridine acts in part to promote the
dissociation of the key O-Al bond, thereby accelerating
both acetylation to 12 and breakdown to the aluminate
of 3, we altered the quenching procedure to maintain an
excess of acetylating agent throughout: Ac,O (6 equiv)
was added, then DMAP in pyridine. This proved effective.
Further trials established that pyridine could be omitted.
Thus, 0.2 equiv of DMAP sufficed to promote >90% con-
version of 11 to 12 on 1-mol scale; 85% conversion was
realized on 7-mol (3-kg) scale by the use of 1equiv of
DMAP.

In pilot experiments performed with i-Bu,AlH in dichlo-
romethane at —70 °C, 12 was obtained in a 6:1 diastereo-
meric ratio (dr). Analogous reductions of 2-(NHCbz)-
propiophenones have been shown to favor the anti-config-
ured products.’® The dr of 12 had little influence on the
subsequent transformation to 13. We later came to prefer
Red-Al over i-Bu,AlH for ease and safety of handling
and workup.'®

Compound 12 proved stable to routine handling includ-
ing preparative chromatography on silica, but was typically
carried forward without purification. The +APCI mass
spectrum of 12 was dominated by an ion of m/z =414,
consistent with heterolysis in the desired manner.
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Treatment of 12 with Et;SiH or n-BuMe,SiH!”*'® and BF;
etherate (2 equiv of each) in CH,Cl, at 23 °C then gave 13,
mp 119.5-122.5 °C, in 60% yield from 11 after crystalliza-
tion from n-BuCl-hexane. The enantiomeric excess of such
material was determined to be 97%, corresponding to that
of the L-Ala component used to prepare 10. Notably, acyl-
indazole 11 proved inert to reduction under these
conditions.

General precedent for this deacetoxylation step can be
discerned in a report by Mayr of the conversion of N-(1-
acetoxyethyl)carbazole to N-ethylcarbazole by treatment
with Et;SiH and TMSOTS.!"” The former substance was
obtained by the addition of carbazole'™ to vinyl acetate,?
a method that in several variants has yielded other simple
racemic azole adducts.”' Silane deoxygenation of hemi-
aminal structures is more typically practiced in the non-
aromatic domain, exemplified by 2-hydroxy- and 2-
acyloxypyrrolidines and the corresponding piperidines.*?

The synthesis of 1 was completed by hydrogenolysis of
13. Alternatively, exposure of 13 to 3.5 mol equiv of boron
trichloride in CH,Cl, at —45 °C selectively cleaved the aryl
benzyl ether to provide the monoprotected derivative 14.

In summary, the new route shown in Scheme 3 redresses
prior issues related to alkylation regiochemistry and amino
group emplacement, without recourse to chromatography
and with no increase in step count from Scheme 1 common
intermediate 2. The scope and scale of hemiaminal ester
formation and deoxygenation have been enlarged to
encompass an indazole-derived substrate bearing an adja-
cent stereocenter. Refinements and scaleup studies are
ongoing and will be reported in due course.
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